Co ordinate


Demo
  1. (a) Find the equation of a straight line passing through the point ( 2 , 2 ) ( 2 , 2 ) (-2,2)(-2,2)(2,2) and slope -3 .
=>quad\Rightarrow \quad Here, passing point ( x 1 , y 1 ) = ( 2 , 2 ) x 1 , y 1 = ( 2 , 2 ) (x_(1),y_(1))=(-2,2)\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(-2,2)(x1,y1)=(2,2)
Slope ( m ) = 3 ( m ) = 3 (m)=-3(m)=-3(m)=3
We know that;
Equation of line in point slope form is;
y y 1 = m ( x x 1 ) or, y 2 = 3 ( x + 2 ) or, y 2 = 3 x 6 3 x + y + 4 = 0 is the required equation.      y y 1 = m x x 1  or,       y 2 = 3 ( x + 2 )  or,       y 2 = 3 x 6      3 x + y + 4 = 0  is the required equation.  {:[,y-y_(1)=m(x-x_(1))],[" or, ",y-2=-3(x+2)],[" or, ",y-2=-3x-6],[:.quad,3x+y+4=0" is the required equation. "]:}\begin{array}{ll} & y-y_{1}=m\left(x-x_{1}\right) \\ \text { or, } & y-2=-3(x+2) \\ \text { or, } & y-2=-3 x-6 \\ \therefore \quad & 3 x+y+4=0 \text { is the required equation. } \end{array}yy1=m(xx1) or, y2=3(x+2) or, y2=3x63x+y+4=0 is the required equation. 
(b) Find the equation of a straight line passing through the point ( 4 , 5 ) ( 4 , 5 ) (4,5)(4,5)(4,5) and slope = 7 = 7 =7=7=7.
=>quad\Rightarrow \quad Here, passing point ( x 1 , y 1 ) = ( 4 , 5 ) x 1 , y 1 = ( 4 , 5 ) (x_(1),y_(1))=(4,5)\left(x_{1}, y_{1}\right)=(4,5)(x1,y1)=(4,5)
Slope ( m ) = 7 ( m ) = 7 (m)=7(m)=7(m)=7
We know that;
Equation of line in point slope form is;
y y 1 = m ( x x 1 ) or, y 5 = 7 ( x 4 ) or, y 5 = 7 x 28 7 x y 23 = 0 is the required equation.      y y 1 = m x x 1  or,       y 5 = 7 ( x 4 )  or,       y 5 = 7 x 28      7 x y 23 = 0  is the required equation.  {:[,y-y_(1)=m(x-x_(1))],[" or, ",y-5=7(x-4)],[" or, "quad,y-5=7x-28],[:.quad,7x-y-23=0" is the required equation. "]:}\begin{array}{ll} & y-y_{1}=m\left(x-x_{1}\right) \\ \text { or, } & y-5=7(x-4) \\ \text { or, } \quad & y-5=7 x-28 \\ \therefore \quad & 7 x-y-23=0 \text { is the required equation. } \end{array}yy1=m(xx1) or, y5=7(x4) or, y5=7x287xy23=0 is the required equation. 
  1. (a) Find the equation of line passing through ( 2 , 3 ) ( 2 , 3 ) (2,-3)(2,-3)(2,3) and inclined at an angle of 135 135 135^(@)135^{\circ}135 with the positive direction of X X X\mathrm{X}X-axis.
=>quad\Rightarrow \quad Here, passing point ( x 1 , y 1 ) = ( 2 , 3 ) x 1 , y 1 = ( 2 , 3 ) (x_(1),y_(1))=(2,-3)\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(2,-3)(x1,y1)=(2,3)
Inclination with + v e x + v e x +vex+\mathrm{ve} x+vex-axis ( θ ) = 135 ( θ ) = 135 (theta)=135^(@)(\theta)=135^{\circ}(θ)=135
:.quad\therefore \quad slope ( m ) = tan θ = tan 135 = 1 ( m ) = tan θ = tan 135 = 1 (m)=tan theta=tan 135^(@)=-1(\mathrm{m})=\tan \theta=\tan 135^{\circ}=-1(m)=tanθ=tan135=1
We know that,
Equation of straight line passing through ( x 1 , y 1 ) x 1 , y 1 (x_(1),y_(1))\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)(x1,y1) and having slope m m m\mathrm{m}m is;
y y 1 = m ( x x 1 ) y y 1 = m x x 1 y-y_(1)=m(x-x_(1))\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)yy1=m(xx1)
or, y ( 3 ) = 1 ( x 2 ) y ( 3 ) = 1 ( x 2 ) quad y-(-3)=-1(x-2)\quad y-(-3)=-1(x-2)y(3)=1(x2)
or, y + 3 = x + 2 y + 3 = x + 2 quad y+3=-x+2\quad y+3=-x+2y+3=x+2
x + y + 1 = 0 x + y + 1 = 0 :.quadx+y+1=0\therefore \quad \mathrm{x}+\mathrm{y}+1=0x+y+1=0 is the required equation. (b)
Find the equation of line passing through ( 5 , 7 ) ( 5 , 7 ) (5,7)(5,7)(5,7) and inclined at an angle of 45 45 45^(@)45^{\circ}45 with the positive direction of X X X\mathrm{X}X-axis.
=>quad\Rightarrow \quad Here, passing point ( x 1 , y 1 ) = ( 5 , 7 ) x 1 , y 1 = ( 5 , 7 ) (x_(1),y_(1))=(5,7)\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(5,7)(x1,y1)=(5,7)
Inclination with +ve x x x\mathrm{x}x-axis ( θ ) = 45 ( θ ) = 45 (theta)=45^(@)(\theta)=45^{\circ}(θ)=45
:.quad\therefore \quad slope ( m ) = tan θ = tan 45 = 1 ( m ) = tan θ = tan 45 = 1 (m)=tan theta=tan 45^(@)=1(\mathrm{m})=\tan \theta=\tan 45^{\circ}=1(m)=tanθ=tan45=1
We know that,
Equation of straight line passing through ( x 1 , y 1 ) x 1 , y 1 (x_(1),y_(1))\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)(x1,y1) and having slope m m m\mathrm{m}m is;
y y 1 = m ( x x 1 ) or, y 7 = 1 ( x 5 ) or, y 7 = x 5 x y + 2 = 0 is the required equation.      y y 1 = m x x 1  or,       y 7 = 1 ( x 5 )  or,       y 7 = x 5      x y + 2 = 0  is the required equation.  {:[,y-y_(1)=m(x-x_(1))],[" or, "quad,y-7=1(x-5)],[" or, "quad,y-7=x-5],[:.quad,x-y+2=0" is the required equation. "]:}\begin{array}{ll} & y-y_{1}=m\left(x-x_{1}\right) \\ \text { or, } \quad & y-7=1(x-5) \\ \text { or, } \quad & y-7=x-5 \\ \therefore \quad & x-y+2=0 \text { is the required equation. } \end{array}yy1=m(xx1) or, y7=1(x5) or, y7=x5xy+2=0 is the required equation. 
(c) Find the equation of line passing through ( 2 , 2 3 ) ( 2 , 2 3 ) (2,2sqrt3)(2,2 \sqrt{3})(2,23) and inclined at angle of 30 30 30^(@)30^{\circ}30 with the positive direction of X X X\mathrm{X}X-axis.
=>quad\Rightarrow \quad Here, passing point ( x 1 , y 1 ) = ( 2 , 2 3 ) x 1 , y 1 = ( 2 , 2 3 ) (x_(1),y_(1))=(2,2sqrt3)\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(2,2 \sqrt{3})(x1,y1)=(2,23)
Inclination with +ve x x x\mathrm{x}x-axis ( θ ) = 30 ( θ ) = 30 (theta)=30^(@)(\theta)=30^{\circ}(θ)=30
:.quad\therefore \quad slope ( m ) = tan θ = tan 30 = 1 3 ( m ) = tan θ = tan 30 = 1 3 (m)=tan theta=tan 30^(@)=(1)/(sqrt3)(\mathrm{m})=\tan \theta=\tan 30^{\circ}=\frac{1}{\sqrt{3}}(m)=tanθ=tan30=13
We know that,
Equation of straight line passing through ( x 1 , y 1 ) x 1 , y 1 (x_(1),y_(1))\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)(x1,y1) and having slope m m m\mathrm{m}m is;
y y 1 = m ( x x 1 ) y y 1 = m x x 1 y-y_(1)=m(x-x_(1))\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)yy1=m(xx1)
or, y 2 3 = 1 3 ( x 2 ) y 2 3 = 1 3 ( x 2 ) quad y-2sqrt3=(1)/(sqrt3)(x-2)\quad y-2 \sqrt{3}=\frac{1}{\sqrt{3}}(x-2)y23=13(x2)
or, 3 y 2 × 3 = x 2 3 y 2 × 3 = x 2 quadsqrt3y-2xx3=x-2\quad \sqrt{3} \mathrm{y}-2 \times 3=\mathrm{x}-23y2×3=x2
x 3 y + 4 = 0 x 3 y + 4 = 0 :.quad x-sqrt3y+4=0\therefore \quad x-\sqrt{3} y+4=0x3y+4=0 is the required equation.
(d) Find the equation of the line passing through the point ( 1 , 2 ) ( 1 , 2 ) (1,2)(1,2)(1,2) and making an angle of tan 1 ( 1 3 ) tan 1 1 3 tan^(-1)((1)/(3))\tan ^{-1}\left(\frac{1}{3}\right)tan1(13) with the X X X\mathrm{X}X-axis.
=>quad\Rightarrow \quad Here, passing point ( x 1 , y 1 ) = ( 1 , 2 ) x 1 , y 1 = ( 1 , 2 ) (x_(1),y_(1))=(1,2)\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(1,2)(x1,y1)=(1,2)
Inclination with + v e x + v e x +vex+\mathrm{ve} x+vex-axis ( θ ) = tan 1 ( 1 3 ) ( θ ) = tan 1 1 3 (theta)=tan^(-1)((1)/(3))(\theta)=\tan ^{-1}\left(\frac{1}{3}\right)(θ)=tan1(13)
or, tan θ = 1 3 tan θ = 1 3 quad tan theta=(1)/(3)\quad \tan \theta=\frac{1}{3}tanθ=13
:.quad\therefore \quad slope ( m ) = 1 3 ( m ) = 1 3 (m)=(1)/(3)(\mathrm{m})=\frac{1}{3}(m)=13
We know that,
Equation of straight line passing through ( x 1 , y 1 ) x 1 , y 1 (x_(1),y_(1))\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)(x1,y1) and having slope m m m\mathrm{m}m is;
y y 1 = m ( x x 1 ) y y 1 = m x x 1 y-y_(1)=m(x-x_(1))y-y_{1}=m\left(x-x_{1}\right)yy1=m(xx1)
or, y 2 = 1 3 ( x 1 ) y 2 = 1 3 ( x 1 ) quad y-2=(1)/(3)(x-1)\quad y-2=\frac{1}{3}(x-1)y2=13(x1)
or, 3 y 6 = x 1 3 y 6 = x 1 quad3y-6=x-1\quad 3 y-6=x-13y6=x1
x 3 y + 5 = 0 x 3 y + 5 = 0 :.quadx-3y+5=0\therefore \quad \mathrm{x}-3 \mathrm{y}+5=0x3y+5=0 is the required equation.

No comments:

Post a Comment